ROLE OF DISTRIBUTED INTER-BRISTLE FRICTION FORCE ON BRUSH SEAL HYSTERESIS

Helen Zhao and Robert Stango Marquette University Milwaukee, Wisconsin

Role of Distributed Inter-bristle Friction Force On Brush Seal Hysteresis

Ву

Helen Zhao and Robert Stango

Department of Mechanical and Industrial Engineering Marquette University, Milwaukee, WI Email: haifang.zhao@marquette.edu; robert.stango@marquette.edu

L

Introduction and Background

Figure 1 Brush seal with various working loads

Figure 1

- •Interference parameter •
- Inward radial flow-induced load q_o
- •Contact force F_{res} generated at interface of fiber tip and rotor
- •Local oncoming flow of gas toward bristle pack q_x

Inter-bristle friction force model

Section A-A

Figure 2

- (a) Depiction of partial brush seal with front and back plate that constrain bristle pack
- (b) Section A-A view,
 depicting the
 compactive load g_c
 around bristle pack.
 The interactive forces
 of three fibers (1, 2,
 3) are studied for
 hysteresis
 phenomenon

Inter-bristle Friction Model (cont'd)

Figure 3

- Three un-deformed neighboring fibers subjected to the compactive load g_c
- Deformation of fibers under compactive load g_c.

Inter-bristle Friction Model (cont'd)

(b)

Figure 4

- (a) Segment of the deformed fiber subjected to the uniform compactive load g_c and traction force f_{A-A} and $f_{B'-B}$
- (b) simplified model
 depicting interaction
 between neighboring
 bristles as uniformly
 distributed moment m*
 along deformed fiber

Inter-bristle Friction Model---derivation of m*

Refer to Fig.3 and Fig.4:

1. Differential frictional force $df_{A-A'}$ and $df_{B'-B}$

$$df_{A-A'} = \mu dN; df_{B'-B} = \mu dN$$

$$dN = ds \cdot g_{c}$$

$$df_{A-A'} = \mu g_{c} ds$$

$$df_{B'-B} = \mu g_{c} ds$$

2. Differential moment dm:

$$dm = 2\mu g_c r_w ds$$

3. Resisting bending moment m

$$m = 2\mu g_c r_w L$$

4. <u>Distributed bending moment per unit length m</u>

$$m^* = 2\mu g_c r_w$$

If Hexagaonal closed-pack, then $m^* = 2\mu g_c r_w (1 + 2\cos 60)$

$$m^* = 2\mu g_c r_w (1 + 2\cos 60)$$

Governing Equation

According to Euler-Bernoulli Law:

$$EIK = M_{m^*} + M_{F_{res}}$$
 with $K = \frac{d\phi}{ds}$

Governing Equation:

$$EI\frac{d^2\phi}{ds^2} = m^* - F_{res}\cos(\alpha - \mu - \phi)$$

Non-dimensional form of governing equation:

$$\frac{d^2\phi}{ds^{*2}} = \frac{m^*H^{*2}}{EI} - \frac{F_{res}H^{*2}}{EI}\cos(\alpha - \mu - \phi)$$

Boundary conditions and constraint conditions

Boundary conditions:

1. slope constraint at the bristle origin, i.e.

$$\Phi=0$$
 at $s=0$

2. Free of moment at the bristle tip, i.e.

$$d\Phi/ds=0$$
 at $s=L$

Constraint conditions:

$$\left| x_{t} - x_{\xi} \right| < \varepsilon; \left| y_{t} - y_{\xi} \right| < \varepsilon$$

Where,

where,
$$x_{\xi} = (R_s + H^* - \Delta_o^*) \cos \theta - R_s \cos(\theta + \frac{\xi}{R_s})$$

$$x_t = \int_0^L \cos \phi ds; y_t = \int_0^L \sin \phi ds$$

$$y_{\xi} = R_s \sin(\theta + \frac{\xi}{R_s}) - (R_s + H^* - \Delta_o^*) \sin \theta$$

$$x_{\xi} = (R_s + H^* - \Delta_o^*) \cos \theta - R_s \cos(\theta + \frac{\xi}{R_s})$$

$$y_{\xi} = R_s \sin(\theta + \frac{\xi}{R_s}) - (R_s + H^* - \Delta_o^*) \sin \theta$$

Figure 5

Eccentric movement of rotor and displacement of bristle pack

Numerical Results and Discussion

Figure 6

Relationship between $\frac{F_{res}H^{*2}}{EI}$ and $\frac{\Delta^*}{H^*}$ during loading and unloading Δ^* for a transition seal with $R_s/H^*=8.9$, $\theta=45^0$ and $\overline{m}=\frac{m^*H^{*2}}{EI}=0.135$.

 Δ_g/H^* shows the position where fibers are "stuck", i.e., cannot completely recover from bending during unloading Δ^*

Numerical Results and Discussion (Cont'd)

Figure 7 (a) Relationship between dimensionless contact force and dimensionless penetration depth for \overline{m} =0, 0.045, 0.090, 0.135. (Results shown are for R_s/H*=8.9, θ =45°; (b) relationship between Δ_g /H* and non-dimensional bending moment \overline{m}

MARQUETTE UNIVERSITY

Numerical Results and Discussion (Cont'd)

Figure 8 (a) Relationship between dimensionless contact force and dimensionless penetration depth for θ =15, 30 and 45 degrees. (Results shown are for a bristle with R_s/H*=8.9, Δ^*_{o} =0, \overline{m} =0.135) and (b) Relationship between Δ_g /H* and bristle lay angle θ

Conclusions/Summary

- The micro-moment can give rise to a delayed filament displacement as the shaft undergoes transient excursion and moves radially toward bristle pack (uploading).
- However, as the shaft returns back to its concentric position (downloading), the filament CANNOT completely recover from its deformed position and remains locked in an alternate configuration.
- Consequently, an annular gap is generated between the fiber tips and shaft surface, which promotes brush seal leakage and reduces turbomachinery performance.

Conclusions/Summary (cont'd)

- In general, for a given brush seal, the annular gap increases linearly as the micro moment m* is increased.
- The brush seal having a shallowest lay angle (15°) results in the smallest annular gap, indicating that a brush seal design with shallow lay angle is least prone to hysteresis phenomenon, and can lead to improved performance.